Двоичная система счисления
Двоичная система — это один из видов позиционных систем счисления. Основание данной системы равно двум, то есть используется только два символа для записи чисел.
Немного истории
Впервые о данной системе чисел заговорил основоположник математического анализа Г.В. Лейбниц еще в XVII веке. Он доказал, что для данного множества действуют все арифметические операции: сложение, вычитание, умножение и даже деление. Однако вплоть до 30-х годов XX века данную систему не рассматривали всерьез. Но с развитием электронных устройств и ЭВМ, ученые вновь принялись к изучению данной темы, так как двоичная система отлично подходила для программирования и организации хранения данных в памяти компьютеров.
Таблица и алфавит
Алфавит двоичной системы счисления состоит всего из двух знаков: 0 и 1. Однако это нисколько не усложняет выполнение арифметических действий.
Кроме того, двоичная система является самой удобной для быстрого перевода в другие системы счисления.
Так, чтобы перевести двоичное число в десятичное, необходимо найти значение его развернутой формы. Например:
1001102 = 1 ∙ 25 + 0 ∙ 24 + 0 ∙ 23 + 1 ∙ 22 + 1 ∙ 22 + 0 ∙ 20 = 32 + 0 + 0 + 4 + 2 + 0 = 3810
Чтобы наоборот перевести число в двоичную из десятичной, необходимо выполнить его деление на 2 с остатком, а затем записать все остатки в обратном порядке, начиная с частного:
Делимое | 38 | 19 | 9 | 4 | 2 |
---|---|---|---|---|---|
Делитель | 2 | 2 | 2 | 2 | 2 |
Частное | 19 | 9 | 4 | 2 | 1 |
Остаток | 0 | 1 | 1 | 0 | 0 |
3810 = 1001102
Для перевода в другие системы необходимо:
- Перевести двоичный код в десятичный.
- Выполнить деление десятичного числа на основание той системы, в которую требуется перевести.
Однако можно воспользоваться и более быстрым и удобным способом: разделить знаки двоичного числа на условные группы слева на право (для восьмеричной — по 3 знака; для шестнадцатеричной — по 4 знака), а затем воспользоваться таблицей перевода:
Двоичная | Восьмеричная | Шестнадцатеричная |
---|---|---|
0 | 0 | 0 |
001 | 1 | 1 |
010 | 2 | 2 |
011 | 3 | 3 |
100 | 4 | 4 |
101 | 5 | 5 |
110 | 6 | 6 |
111 | 7 | 7 |
1000 | 8 | |
1001 | 9 | |
1010 | A | |
1011 | B | |
1100 | C | |
1101 | D | |
1110 | E | |
1111 | F |
Например:
110010012 = 11 001 001 = 011 001 001 = 3118
110010012 = 1100 1001 = С916
Представление двоичных чисел
В двоичной системе также существует понятие «отрицательных» чисел. И для того, чтобы провести какую-либо операцию с ними в двоичном коде, необходимо представить его в виде дополнительного кода. Запись положительного числа при этом не меняется ни для одного из кодов.
Чтобы найти дополнительный код отрицательного числа, необходимо воспользоваться его прямым и дополнительным кодами.
Прямой код предполагает приписывание единицы в начале без изменений записи:
A > 0 | Aпр = 0A | 1010112; Aпр = 01010112 |
A ≤ 0 | Aпр = 1|A| | -1010112; Aпр = 11010112 |
Для записи обратного кода цифры заменяют на противоположное значение, первую единицу от прямого кода оставляют без изменений:
A > 0 | Aобр = 0A | 1010112; Aобр = 01010112 |
A ≤ 0 | Aобр = 1A | -1010112; Aобр = 10101002 |
Дополнительный код предполагает использование обратного кода, с той лишь разницей, что к отрицательному числу прибавляют единицу:
A > 0 | Aдоп = 0A | 1010112; Aдоп = 01010112 |
A ≤ 0 | Aдоп = 1A + 1 | -1010112; Aдоп = 10101012 |
Применение двоичной системы в информатике
Двоичная система получила особое распространение в программировании цифровых устройств, так как она соответствует требованиям многих технических устройств, поддерживающих два состояния (есть ток, нет тока). Кроме того, является более простой и надежной для кодирования информации. Именно поэтому программный код большей части ЭВМ основан именно на двоичной системе счисления.