Перевести число 4A90 из шестнадцатеричной системы в двоичную

Задача: перевести число 4A90 из шестнадцатеричной в двоичную систему счисления.

Для перевода 4A90 из шестнадцатеричной в двоичную систему счисления, воспользуемся следующим алгоритмом:

  1. Переведем число 4A90 из шестнадцатеричной системы в десятичную;
  2. Полученное число переведём из десятичной системы в двоичную;

Решение:

1. Для перевода числа 4A90 в десятичную систему воспользуемся формулой:

An = an-1 ∙ qn-1 + an-2 ∙ qn-2 + ∙∙∙ + a0 ∙ q0

Отсюда:

4A9016=4 ∙ 163 + A ∙ 162 + 9 ∙ 161 + 0 ∙ 160 = 4 ∙ 4096 + 10 ∙ 256 + 9 ∙ 16 + 0 ∙ 1 = 16384 + 2560 + 144 + 0 = 1908810

Таким образом:

4A9016 = 1908810

2. Полученное число 19088 переведем из десятичной системы счисления в двоичную. Для этого, осуществим последовательное деление на 2, до тех пор пока остаток не будет меньше чем 2.

19088 2
19088 9544 2
0 9544 4772 2
0 4772 2386 2
0 2386 1193 2
0 1192 596 2
1 596 298 2
0 298 149 2
0 148 74 2
1 74 37 2
0 36 18 2
1 18 9 2
0 8 4 2
1 4 2 2
0 2 1
0

Полученные остатки записываем в обратном порядке, таким образом:

1908810=1001010100100002

Ответ: 4A9016 = 1001010100100002.

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние переводы
  • Какое число еще хотите перевести?

    * Все поля обязательны
  • Дробное число вводите через точку
  • Введите от 2 до 35
  • Введите от 2 до 35
Подписаться
Уведомить о
guest
0 Комментарий
Межтекстовые Отзывы
Посмотреть все комментарии
Adblock
detector